Original Research Article

Radiological findings of pulmonary tuberculosis in adolescents in a teaching hospital, Sangareddy

Chinta Vittal Prasad¹*, Nagababu Pyadala²

¹Professor, Department of Radiology, MNR Medical College and Hospital, Fasalwadi, Sangareddy, Telangana, India
²Research Associate, MNR Foundation for research and innovation, Sangareddy, Telangana State, India
*Corresponding author email: chintavittal@yahoo.com

How to cite this article: Chinta Vittal Prasad, Nagababu Pyadala. Radiological findings of pulmonary tuberculosis in adolescents in a teaching hospital, Sangareddy. IAIM, 2017; 4(6): 170-174.

Abstract

Background: Tuberculosis (TB) accounts for 1.7 million deaths, according to the recent WHO report. India alone accounts for one fifth (21%) of all the TB cases globally.

Objectives: Radiologic findings of pulmonary tuberculosis (TB) in adolescents.

Materials and methods: A cross-sectional, observational study of 170 patients with TB aged 10 to 19 years. Data were collected from the TB notification and medical records during the period of 2014-2017. Data were shown in tables and analyzed using the chi-square test, with a 5% significance level.

Results: Mean age was 15.6 years; 97 (57%) patients were males. The most common radiologic lesion was the upper pulmonary lobe infiltrates (43.33%), and isolated cavitation was found in 20.7% of the patients. Both lungs were affected in 32.2% of the patients. The finding of bilateral radiologic lesions was significantly associated with longer disease duration (p = 0.0005).

Conclusion: Pulmonary TB in adolescents has similar characteristics to TB in adults, evidencing the important role played by adolescents to transmit the disease in community.

Key words

Tuberculosis, Adolescents, Chest radiography.
Introduction

Tuberculosis (TB) accounts for 1.7 million deaths, according to the recent WHO report. India alone accounts for one fifth (21%) of all the TB cases globally [1]. Although the real situation of tuberculosis (TB) in adolescents is not well-known, children and adolescents account for 3% to 25% of the TB cases registered in different countries, with high frequencies in areas of high disease burden [2]. In developed countries, TB affects mainly the elderly, but, in developing countries, the productive younger population is the most affected [3, 4]. Children play a limited role in TB transmission in the community, but adolescents can develop bacilliferous, thus transmissible pulmonary TB [5]. At that age, the individual is under development and undergoing behavioral and emotional changes, which can make adherence to treatment of prolonged diseases, such as TB, difficult. This can lead to treatment discontinuation, resulting in perpetuation of TB transmission in the community and appearance of resistant strains. Adolescents have greater social interaction and are more susceptible to illnesses and transmission of TB and other diseases. This study aimed at assessing radiological aspects of pulmonary TB in adolescents.

Materials and methods

A cross-sectional, observational study of 270 patients with TB aged 10 to 19 years. Data were collected during the period of 2014-2017. Each notified case had the medical record located and scrutinized, along with the respective chest radiographic report present in the database of the BCG-Revac trial, which allowed the analysis of the radiologic patterns and their distribution according to age and disease duration [6]. Radiologic patterns were adapted from Marais, et al. [4]. The definition of adolescence of the World Health Organization that includes individuals aged 10 through 19 years, was adopted. Statistical analysis was performed with the software SPSS 20.0. The significance level was 0.05.

Results

Among 170 patients, 57% were male and 42.9% were female. Mean age was 15.6 years (Table - 1). Table - 2 shows the major characteristics of the chest radiographic findings. The most frequent types of radiologic lesion were as follows: infiltrates (43.5%); cavitations (20.6%); and condensation (12.35%). Hilar lymph node enlargement was found in 4.7% of the cases, and atelectasis in 0.6% of the cases. The TB radiologic lesions were bilateral in 31.7%.

<table>
<thead>
<tr>
<th>Category</th>
<th>Total cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>97 (57%)</td>
</tr>
<tr>
<td>Female</td>
<td>73 (42.94%)</td>
</tr>
<tr>
<td>10-15 years</td>
<td>65 (38.23%)</td>
</tr>
<tr>
<td>16-19 years</td>
<td>105 (61.7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Total cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>09 (5.3%)</td>
</tr>
<tr>
<td>Condensation</td>
<td>21 (12.35%)</td>
</tr>
<tr>
<td>Infiltrate</td>
<td>74 (43.5%)</td>
</tr>
<tr>
<td>Cavitations</td>
<td>35 (20.6%)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>19 (11.1%)</td>
</tr>
<tr>
<td>Lymph-node pulmonary</td>
<td>08 (4.7%)</td>
</tr>
<tr>
<td>Miliary</td>
<td>03 (1.8%)</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>01 (0.6%)</td>
</tr>
<tr>
<td>Bilateral lesions</td>
<td>54 (31.7%)</td>
</tr>
</tbody>
</table>

Discussion

As the adolescent TB is similar to the TB disease in adults, the diagnostic tests and the diagnostic methods used in adults can also be used in adolescent age group. There are no special diagnostic guidelines for the diagnosis of tuberculosis among adolescents. The delay in the final diagnosis of Tuberculosis disease from the onset of symptoms is a big challenge in adolescents. The study conducted in Toronto, Canada has found that the average time from the onset of symptoms to diagnosis of Tuberculosis disease was 5.25 months with a median of 4
months [7]. The present study showed a predominance of characteristic lesions of re-
re-infection or adult type TB in the adolescents assessed: 43.5% of chest x-rays had infiltrates in
the upper third of the lungs, and 20.6% of the radiographs showed cavitations. In addition,
most patients with cavitations were adolescents in the post pubertal stage (median of age, 16
years), a situation compatible with primo-
fection occurring early in childhood. Chest
radiograph was largely used in the services of the
National TB Control Program emphasizing the
importance of imaging diagnosis in health care
services in India. Radiologic patterns of
pulmonary TB allow us to infer several aspects
of the pathogenesis and clinical picture of the
patients assessed. Classically, there are two
presentations of TB: primo-infection or primary
TB, and reinfection. The former is more
commonly found during childhood, and is
characterized by uni- or bilateral hilar lymph
node enlargement either in association or not
with pulmonary infiltrates [4]. Likewise,
hematogenous disseminations, also found in TB
primo-infection, radiologically expressed as
disseminated micronodular infiltrates, known as
the miliary pattern [8]. In the present study, the
primary TB presentation classified as lymph
node-pulmonary, primary complex, and miliary
added up to over 3% of the total. It is evident that
the adolescents here studied had already
developed TB primo-infection prior to the
disease that made them look for health care. In
India and in other countries with a high TB
burden, TB primo-infection and primary TB are
more common in children than in adults, because
of the high likelihood of contact with M.
tuberculosis during childhood. In developed
countries, the likelihood of developing TB
primo-infection can be postponed to adolescence
or adulthood [8, 9]. Individuals who had TB
primo-infection or had been vaccinated with
BCG develop a type of immunogenic defense
that, when exposed to a bacillary burden
originating from a contagious source, relies on
the immune memory to trigger phagocytosis of
the bacilli, which then enter a state of metabolic
inactivity [10, 11]. If the immune system fails re-

infection or adult-type TB can occur. In such
cases, the chest radiograph shows characteristic
infiltrates and cavitations in the upper pulmonary
thirds, usually in the posterior segments. The
most severe radiologic forms of re-infection TB
appear as extensive bilateral lesions, cavitations,
and bronchial dissemination of the disease [8]. In
this study, cavitations were more common in
adolescents aged 16 years or older, while lymph
nodes enlargement were more common in
patients aged 15 years or less. This distribution
confirms the classical notion that more
suggestive forms of primary TB occur in younger
individuals and post-primary manifestations in
older adolescents. The same analysis regarding
sex, showed no difference. Pleural effusion due
to TB, more common in adolescents and adults
than in children, was observed in 11.1% of the
patients. In this study, the most severe TB lesions
were related to the longer duration of symptoms,
possibly due to a diagnosis delay in health
services. The effectiveness of TB control
programs can be assessed through the delay to
establish TB diagnosis [11]. This study had some
limitations. One concern is the lack of
information about some variables, such as
demographic data and less number of cases.
Similarly, comparison of our data with those
reported in the literature could not be done as
most studies in countries where TB is endemic
and affects adolescents do not allow for separate
analysis of that age group. TB control programs
around the world use the cut-off point of 15 years
to categorize patients as children or adults, and,
thus, data referring to adolescents (over 10 years
of age) can’t be retrieved. In conclusion, most
cases of TB in adolescents were similar to those
in adults: apical pulmonary infiltrates, extensive
lesions, and cavitations. Primary TB forms were
rare [12]. Delay in diagnosis leads to the delay in
the treatment of tuberculosis and thus increased
infectivity of the diseased person in the
community. It is observed that the compliance to
TB treatment in adolescent age group is difficult
because of different social issues. It is very
important to promote Tuberculosis control
programs in this age group because of their
unwillingness to the adherence and acceptance of
the anti-tubercular treatment [13, 14, 15]. This delay may have accounted for the finding of severe lesions in many patients. Adolescents belong to a group that deserves special attention from health care providers, either due to their difficulty in adhering to prolonged treatments or to their reluctance to look for medical care. Thus, further efforts are recommended to improve the efficacy of the health care network for diagnosing TB and to provide more information regarding the complaints suggestive of TB in adolescents, aiming at earlier diagnosis of the disease.

Conclusion

Pulmonary TB in adolescents has similar characteristics to TB in adults, evidencing the important role played by adolescents to transmit the disease in community.

References
