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Abstract 

 

This study presents a multi-exposed fusion algorithm aimed at enhancing the quality of retinal images 

captured under variable illumination conditions. Retinal imaging devices frequently struggle with 

inconsistent lighting, which can lead to low-contrast images where critical vascular details may be 

lost. The proposed algorithm combines multiple exposures, preserving the best features from each - 

improving both clarity and detail. Using the database of 40 retinal images, the method evaluates 

image quality through the structural similarity index measure (SSIM). Results indicate high structural 

similarity between fused images and input images across different illumination levels, with SSIM 

values above 0.9 for medium and high exposure. Furthermore, incorporating Contrast-Limited 

Adaptive Histogram Equalization (CLAHE) enhances contrast, facilitating clearer vessel visualization 

against the background. The improved contrast and detail retention achieved by the algorithm support 

accurate retinal vessel analysis, which is crucial in diagnosing conditions like diabetic retinopathy and 

glaucoma. This approach provides a robust, enhanced imaging solution for medical diagnostics, 

significantly improving readability and reliability in retinal assessments. 
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Introduction 

Imaging equipment, which includes fundus 

cameras, OCT scanners, and fluorescein 

angiography devices, faces challenges in 

capturing high-quality images with optimal 

brightness and contrast [1]. These devices 

depend on proper lighting, exposure settings, and 

sensor sensitivity to capture fine retinal details. 

However, achieving uniform illumination is 

difficult due to inherent limitations, often 

resulting in low contrast between retinal vessels 

and surrounding tissues. This can cause over 

exposed or under exposed areas, leading to a loss 

of critical details [2-6]. Image quality may also 

degrade due to patient movement, pupil dilation 

variations, cataracts, and other ocular conditions. 

To address these issues, advanced post-

processing techniques like multi-exposure fusion 

algorithms are necessary [7-9]. These algorithms 

combine images taken at varying exposure levels 

to produce a single, enhanced image, preserving 

the best aspects of both dark and bright regions. 

This approach makes subtle structures, such as 

small retinal vessels, more visible, improving 

diagnostic accuracy. Enhanced luminosity and 

contrast benefit subsequent image analysis steps 

like segmentation and edge detection, crucial for 

accurately isolating blood vessels. By improving 

image clarity and detail, multi-exposure fusion 

supports better monitoring and diagnosis of 

conditions such as diabetic retinopathy, 

glaucoma, and hypertension, contributing to 

improved patient care in ophthalmology [8-14].  

 

Materials and methods 

Data base and Workflow 

DRIVE is one of the most popular databases 

related to the analysis of images in the human 

retina, specially conceived to support research 

activities concerning the automatic segmentation 

and analysis of vessels in images of the retina. It 

was developed by the Image Sciences Institute of 

the Utrecht University in the Netherlands, based 

on a diabetic retinopathy screening program. In 

this work, the used dataset involves color fundus 

images taken for a total of 40. Images in this 

dataset had been taken from the Canon CR5 non-

mydriatic 3CCD camera with a field view of 45 

degree images. Each image has a resolution of 

768 × 584 pixels. These images contain both 

normal and pathological cases to provide a 

comprehensive test set for evaluating algorithms. 

For the ground truth comparison, manual 

segmentations of retinal vessels are also provided 

in the DRIVE database by two independent 

human observers [15]. The first one was used as 

a reference standard while the second was 

included for comparative analysis, where by the 

researchers could compare the performance of 

their algorithms to that of a human. Owing to the 

high quality of images and detailed annotation, 

the present database is rather useful in the 

development and testing of machine learning 

models and image processing algorithms directed 

at vessel segmentation, edge detection, and 

similar tasks. 

 

Multi-exposed fusion algorithm 

Multi-exposure fusion algorithms merge several 

images of the same scene taken with different 

exposures into one well-exposed image that 

captures from each input the best details. 

Basically, it works by first capturing multiple 

shots of a scene using different exposures - from 

under to over exposure. Then, for every image, 

weight maps will be computed, emphasizing 

those regions that contain desirable features such 

as good exposure, high contrast, and vivid colors. 

These images and their weight maps are 

decomposed into multi-level pyramids, Laplacian 

pyramids of the images, and Gaussian pyramids 

of the weight maps, to capture the details in 

different resolutions [12-14]. Then, at each level 

in the pyramids, images undergo a weighted 

blend through their weight maps; this ensures 

that the best portions of each image are retained. 
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Finally, the pyramid levels of the fused image 

undergo up sampling and addition to reconstruct 

the final image [16-19]. In order to enhance 

visual quality, post-processing steps such as tone 

mapping and noise reduction are done to widen 

the dynamic range through a seamless, well-

balanced image preserving details, brightness, 

and color from all input exposures [19, 20]. 

 

Multi-exposure fusion enhances the algorithm of 

detecting retinal vessels by merging images 

taken under different exposures into one well-

balanced image. This technique maintains the 

best details of both images with the enhancement 

of contrast and visibility of faint blood vessels 

and the reduction of noise and artifacts. Given 

that well-exposed regions are highlighted and 

that vessel clarity is enhanced in the resulting 

fused image, it provides a better view of the 

retina for more accurate detection and analysis of 

the retinal vessels. Indeed, this fact is critical in 

the diagnosis of several pathologies such as 

diabetic retinopathy, whose diagnoses depend on 

the precise visualization of blood vessels [18-20]. 

 

Weight Map Generation 

One of the steps in multi-exposure image fusion 

involves the generation of weight maps to help 

with determining how much each particular 

image should contribute. The function computes 

three weights for every image: contrast weight, 

saturation weight, and well-exposedness weight. 

The contrast weight is obtained from the local 

contrast of each image, putting more emphasis 

on those regions where the changes in intensity 

are larger. These can be edges or detailed regions 

[13]. It enhances the sharpness and clarity of the 

fused image and ensures that well-defined areas 

receive higher priorities. Saturation weight is 

based on the color saturation of the image and 

favors regions of an image with more vivid 

colors. Generally, higher saturation corresponds 

to the most visually appealing and informative 

parts of the image; thus, these areas will be 

prioritized in the fusion process [16].  

 

Finally, the well-exposedness weight measures 

how well each pixel is exposed, preferring 

neither too dark nor too bright pixels. This 

calculates a Gaussian function evaluating the 

closeness of each pixel's intensity to an optimal 

mid-range value. It improves the regions with 

good exposure while constraining the 

contribution of over exposed or under exposed 

areas [16-18]. During the combination of these 

three weight maps, the fusion process can ensure 

that the best-exposed, most colorful, sharpest 

parts from each input image are retained by the 

final image. 

 

Pyramid Decomposition 

Since multi exposure fusion also relies largely on 

pyramid decomposition, images and their weight 

maps are represented at multiple resolutions. 

Pyramid decomposition breaks down the images 

into their respective Laplacian pyramids and the 

corresponding weight maps into Gaussian 

pyramids. Each image is decomposed using a 

Laplacian pyramid because it captures the details 

of the image at various resolutions; hence, the 

edges and textures at each scale can be isolated 

effectively. That is, finer details remain 

preserved toward the top of the pyramid, while 

coarser structures remain preserved further down 

the pyramid [20].  

 

In parallel, for the weight maps, parallel 

Gaussian pyramid decomposition is adopted. The 

Gaussian pyramid creates a smoothed, 

progressively lower-resolution version of the 

weight map at each level. The smoothing helps in 

gradually blending the weight values derived 

during the weighting step and provides a more 

coherent influence across different image scales 

at the time of performing the fusion. By 

representing the images together with their 

weights at multiple levels, the pyramid 

decomposition provides a means for carrying out 

the blending process in a manner that respects 

both the fine detail and overall structure of the 

images [21]. 

 

This multi-resolution approach enables the fusion 

process to seamlessly combine images of varying 

sharpness and exposure, ensuring that every 

portion of the final image benefits from the best 



Cristian-Dragoș Obreja. Optimizing retinal vessel visualization using multi-exposure fusion and adaptive contrast 

enhancement for improved diagnostic imaging. Int. Arch. Integr. Med., 2024; 11(11): 1-10.   

 Page 4 
 

possible representation of detail and clarity. For 

instance, fine textures and edges from the 

Laplacian image pyramids are combined with 

smoothly varying weight values from Gaussians, 

resulting in a more natural balance that is 

appropriate in the fused results. The pyramid 

decomposition will ensure that high-frequency 

details are not lost while retaining the overall 

smoothness during fusion so that the final image 

is both sharp and well-integrated throughout the 

exposures [21, 22]. 

 

Fusion of Pyramids 

The fusion of pyramids is a key stage in the 

multi-exposure image fusion process, where the 

decomposed images and weight maps are 

combined to create a balanced and detailed final 

image. This is done at each level of the pyramid, 

utilizing a function which performs a weighted 

sum of the images based on the values in their 

corresponding weight maps. The weighted sum 

approach allows each image to contribute to the 

final result according to how favorable its 

attributes are at that particular resolution level. 

Smoothening and adjusting the properties 

through a Gaussian pyramid decomposition of 

the weight maps guides this process of blending 

by giving higher weights to areas of each image 

that are best exposed, highly contrasted, and 

richly colored [23]. 

 

If, for example, a region in one of the input 

images enjoys better contrast or is better exposed 

than its counterpart in another image, then this 

weight map will ensure that more attention is 

given to that particular region of interest during 

the fusion process. In scenes where edges are 

sharper, textures clearer, or exposure conditions 

superior, dominance of such regions at each 

pyramid level of the merge ensures greater 

contribution to the composite image. It then 

cascades this process of fusion at all levels of the 

pyramid, from the finest details to the coarser 

structures in the image, so that every aspect of 

the images – may be fine textures, or more 

general brightness and color balance is optimally 

combined into the final result [20-23]. 

 

By fusing the images with these weight maps, the 

appropriate sharpness and contrast from the well-

defined regions, vibrancy from the saturated, and 

proper balance from the well-exposed parts 

maintain their properties in the fused image. This 

technique will ensure that the final image is 

seamless without any traces of transition between 

different regions, retaining all the best 

characteristics from each input image to deliver a 

rich, and well-balanced result [16]. For each 

level l, the fused pyramid level F
l 
is computed as 

a weighted sum of the Laplacian pyramid levels 

from all input images, adjusted by their 

respective weights. Mathematically, this is 

expressed as: 

 

 
where: 

 N: The number of input images. 

 W
l
i: The weight map for image iii at level 

lll. 

 L
l
i: The Laplacian pyramid of image iii at 

level lll. 

 ε: A small constant added to the 

denominator to prevent division by zero. 

 

Reconstruction of the Fused Image 

The final step in the multi-exposure fusion 

process is reconstructing the fused image, where 

all the combined data from each pyramid level is 

reassembled into a complete, detailed image. 

After blending the decomposed pyramids of the 

input images, we are rebuilding the image from 

its fused pyramid structure. This process starts 

from the lowest resolution level, working 

upwards to the highest. At each level, the image 

data is up sampled – meaning its resolution is 

increased to align with the next level [21-23]. 

 

Up sampling is critical because it allows the finer 

details and high-frequency components from the 

higher pyramid levels to integrate smoothly with 

the broader structures captured at lower levels. 

As each up sampled level is combined with the 

corresponding level in the pyramid, the details 
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are progressively restored, layering the image 

back together. This method ensures that both fine 

textures and general luminance and color 

gradients are preserved, creating smooth 

transitions across different parts of the image. 

 

The end result is a reconstructed image that 

effectively combines the strengths of each input 

exposure, maintaining sharpness, appropriate 

exposure, and balanced color throughout [23]. 

This approach ensures that the final image retains 

the detailed elements captured by the Laplacian 

decomposition while benefiting from the smooth 

blending achieved during fusion. The 

reconstructed image looks natural and visually 

appealing, integrating the best features of each 

original image into a single, seamless output, free 

from issues like blurring or abrupt transitions. 

This reconstruction process ensures that the final 

image is rich in detail and depth, offering a 

dynamic and true representation of the original 

scenes [23]. 

 

Post-Processing (Tone Mapping and Noise 

Reduction) 

Post-processing is one of the most important 

steps to refine the final fused image for display 

or any further use. Tone mapping remains the 

critical phenomenon during this step, where the 

intensity levels of an image are changed in such a 

way that general brightness and contrast become 

near to natural and balanced. Tone mapping 

becomes especially necessary when the image 

has high dynamic range – one with huge 

differences between the darkest and brightest 

areas [24-26]. The intensity values of the fused 

image have to be normalized to the input values 

within the displayable range so that the image 

may appear more consistent and detailed on 

standard screens. This transforms an image in 

such a way that details in both shadowed and 

bright areas are well preserved, without any part 

of the image being too dark or washed out. 

 

Noise reduction is further applied as post-

processing in enhancing the clarity of the final 

image through a bilateral filtering technique, 

which smooths the noisy image while preserving 

edges and other important information. Noise 

will be filtered from this image using the 

imbilatfilt function. Unlike traditional filters that 

blur edges, in bilateral filtering, the averaging of 

pixels is performed based on their spatial 

proximity and likeness in intensity. This will 

reduce random noise in such a way that it will 

maintain sharp edges and textures of the image. 

 

This combination of mapping tone and reducing 

noise naturally sees that the merged image is 

natural, balanced-looking, clean, and clear. That 

is, the process of tone mapping optimizes the 

image while considering the best conditions for 

viewing. Noise reduction, on the other hand, 

clears the grainy artifacts that might have been 

introduced through earlier steps in image fusion. 

These steps together retouch the final output to 

be both visually attractive and technically 

appealing for viewing, printing, or further digital 

manipulation [25, 26]. This provides a high-

quality image that is smooth, well-detailed, 

visually harmonious, and with a full range of 

tones and minimal noise. 

 

Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) 

CLAHE, in short, indicates contrast-limited 

adaptive histogram equalization; this improves 

the original histogram equalization methods. 

Based on this improvement, the rationale was to 

avoid the over-enhancement of noise and other 

artifacts in homogeneous regions of the image. 

CLAHE performs the division of the image into 

small regions and then assists in applying 

histogram equalization in each tile independently 

[24]. This local adjustment increases the contrast 

in every region so that details may show more 

easily both in bright and dark areas. 

 

Once local equalization has been done for each 

of the tiles, CLAHE does a sort of blending of 

the tiles through bilinear interpolation in order to 

ensure smooth transitions across bordering tiles 

and to avoid artificial frontiers. A key feature of 

CLAHE, however, is that it applies a contrast 

clipping threshold - an upper limit on the height 

of the histogram of every tile. This avoids the 



Cristian-Dragoș Obreja. Optimizing retinal vessel visualization using multi-exposure fusion and adaptive contrast 

enhancement for improved diagnostic imaging. Int. Arch. Integr. Med., 2024; 11(11): 1-10.   

 Page 6 
 

over-enhancement of regions that might 

otherwise lead to the amplification of unwanted 

noise [24, 25]. 

 

CLAHE can generate enhanced contrast images 

that also have a natural appearance with 

controlled limits on there distribution of pixel 

intensities for preserving significant details in 

images. It can be used in a wide array of areas in 

medical imaging, remote sensing, and 

photography, where such detail enhancement 

would be very much needed to be preserved 

while there is a need for improvement in 

lightening the visibility [24]. 

 

Figure – 1: Examples of vascular map. (a) Input image with low exposure; (b) Input image with 

medium exposure; (c) Input image with high exposure; (d) Fused image (e) Fused image with 

CLAHE filter. 

 
 

Performance evaluation 

Structural Similarity Index Measure, is a 

perceptual metric for assessing image quality. 

Unlike simple pixel comparison metrics like 

Mean Squared Error (MSE) or Peak Signal-to-

Noise Ratio (PSNR), SSIM considers changes in 

structural information, luminance, and contrast, 

making it particularly effective for measuring 

visual quality as perceived by the human eye 

[26-28]. 
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The SSIM formula compares two images, 𝑥 and 

𝑦, typically in sliding windows, and is given by: 

 

 
where: 𝜇𝑥 and𝜇𝑦  are the average intensities of 

images x and y, 𝜎𝑥
2 and 𝜎𝑦

2 are the variances, 𝜎𝑥𝑦  

is the covariance between x and y, 𝐶1and𝐶2 are 

small constants to stabilize division, especially 

when the denominator is closet o zero [27, 28]. 

Results and Discussion 

To assess the performance of the proposed fusion 

algorithm compared with the original images, the 

structural similarity index measure was 

conducted on 40 randomly selected color retinal 

images, each with three levels of illumination. 

Figure – 1 illustrates examples of vascular maps 

generated using the multi-exposed fusion 

algorithm, those generated using CLAHE over 

the fused images, and the three images used as 

input information for the fusion method. 

 

Figure – 2: SSIM values for: (a) input image and fused image for red channel; (b) input image and 

fused image for green channel; (c) input image and fused image for blue channel; (d) input image and 

fused image for mean values. 

 
 

In Figure – 2, a comparison between SSIM 

values of fused images and the three input 

images, affected by different levels of 

illumination. In the forth group the mean SSIM 

values, calculated between the fused images and 

the three input images is presented. In the first 

three groups the SSIM values calculated between 

the red channels (RF), green channels (GF) and 

blue channels (BF) of the input and fused images 

are presented. Each group has three columns, for 

low, medium and high illumination. 

 

Similarly, in Figure - 3, the SSIM values of 

fused and input images is presented, for the 

mean, red channel, green channel and blue 

channel are presented. 

 

The study focuses on improving retinal image 

quality for diagnostic purposes by addressing the 

challenge of illumination variability. Images 

captured under different illumination levels can 

impact visibility and quality, which are crucial 

for accurate analysis of vascular structures in the 

retina. The main advantage of the multi-exposed 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

RF GF BF MF

SSIM indexes for fusion images  

Low illumination Medium illumination High illumination



Cristian-Dragoș Obreja. Optimizing retinal vessel visualization using multi-exposure fusion and adaptive contrast 

enhancement for improved diagnostic imaging. Int. Arch. Integr. Med., 2024; 11(11): 1-10.   

 Page 8 
 

fusion algorithm is its ability to combine images 

taken at different exposure levels, which results 

in a single, high-quality image with enhanced 

visibility of retinal structures. This approach 

mitigates the impact of illumination variability, 

which can obscure details in individual low, 

medium, or high-exposure images. Also, 

enhanced SSIM values indicate that the 

algorithm can provide more consistent structural 

similarity, which is critical for medical image 

diagnostics, particularly in vascular mapping of 

retinal images. The contrast-limited adaptive 

histogram equalization filter further enhances the 

contrast, potentially aiding in clinical readability. 

 

Figure – 3: SSIM values for: (a) input image and fused image with enhanced contrast for red channel; 

(b) input image and fused image with enhanced contrast for green channel; (c) input image and fused 

image with enhanced contrast for blue channel; (d) input image and fused image with enhanced 

contrast for mean values. 

 
 

As we can see from Figure - 2, the SSIM values 

computed, show that there is a high similarity 

between the fused image and the original input 

images, especially for the medium and high 

illumination images. In these cases the SSIM 

values for the mean values, as well as for thered, 

green and blue channels values is over 0.9. 

Furthermore, for the CLAHE enhanced images, 

we can see the structural similarity index values 

are very high, in particular for the medium and 

high illumination.  

 

According to the SSIM values the multi-exposed 

fusion algorithm keeps the retinal vascular tree 

caracteristics and improves their visibility. Also, 

visually, it improves the blood vessel edge 

visibility compared with the background. 

 

Furthermore, the fused images improved with 

CLAHE, have an even higher contrast between 

the foreground and the background, making the 

vascular tree easier to differentiate against the 

background. This is done by making the blood 

vessels edges more visible against the 

background, with a higher drop of pixel intensity 

between the vessel and the neighbouring area. 

 

Conclusion 

In summary, the multi-exposed fusion algorithm 

significantly improves retinal image quality by 

merging images taken at various exposure levels, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RFC GFC BFC MFC

SSIM indexes for contrast enhanced images

Low illumination Medium illumination High illumination



Cristian-Dragoș Obreja. Optimizing retinal vessel visualization using multi-exposure fusion and adaptive contrast 

enhancement for improved diagnostic imaging. Int. Arch. Integr. Med., 2024; 11(11): 1-10.   

 Page 9 
 

allowing for enhanced visibility of retinal vessels 

even under in consistent illumination. SSIM 

evaluations confirm that fused images closely 

resemble the input images, especially under 

medium and high illumination, with similarity 

values frequently above 0.9 for individual color 

channels and mean values. Additionally, the use 

of Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) further heightens 

contrast, aiding in clearer differentiation of blood 

vessels from the background. This combined 

approach not only preserves essential vascular 

details but also improves contrast, which is 

critical for diagnosing conditions like diabetic 

retinopathy. By enhancing both visibility and 

contrast, the algorithm provides a powerful tool 

for accurate retinal analysis, supporting reliable 

diagnostics. 
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