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Abstract 

This study focuses on evaluating image processing techniques for measuring retinal vessel diameters, 

a critical aspect of medical image analysis for diagnosing vascular abnormalities such as diabetic 

retinopathy. Four algorithms, Canny Edge Detection, Marr-Hildreth Filter, Watershed Segmentation, 

and Chan-Vese Algorithm, were assessed for their segmentation performance and measurement 

accuracy. A dataset of 70 retinal images from the DRIVE database, comprising both healthy and 

diabetic retinopathy cases, was used. Each algorithm was implemented in MATLAB and tailored to 

address challenges like noise, intensity variations, and weak boundaries. Vessel diameters were 

calculated using a custom MATLAB algorithm based on the full width at half maximum (FWHM) of 

intensity profiles, with linear interpolation refining the measurements. This work highlights the 

potential and limitations of these algorithms in achieving accurate and reliable vessel segmentation for 

medical imaging applications. 
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Introduction 

Retinal vessel segmentation and diameter 

measurement are essential components of 

medical image analysis, particularly for 

diagnosing and monitoring conditions such as 

diabetic retinopathy. Automated and accurate 

segmentation techniques play a critical role in 

quantifying vascular changes that serve as 

biomarkers for systemic and ocular diseases [1-

3]. 
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The accurate measurement of vascular 

abnormalities, especially those associated with 

diabetic retinopathy, remains challenging due to 

vessel asymmetry and the complexity of the 

background, which often result in measurement 

errors. Current algorithms for blood vessel 

detection are predominantly based on 

segmentation, probing, or edge detection. These 

approaches utilize gradient masks to locate edge 

points and apply morphological operations to 

produce precise edge maps, even under noisy 

conditions. Threshold-based segmentation 

further isolates the foreground (blood vessels) 

from the background, enabling enhanced vessel 

delineation [2-5]. 

 

This study evaluates the performance of various 

image processing algorithms, including the 

Canny edge detection method, Chan-Vese 

algorithm, Marr-Hildreth filter, and Watershed 

segmentation, for retinal vessel analysis. These 

methods are tested on a dataset comprising 70 

retinal images from the DRIVE database, with 35 

ground truth images, 25 healthy subjects and 10 

diabetic retinopathy cases [5-9].  

 

Each algorithm is implemented in MATLAB and 

tailored to segment retinal vessels efficiently 

while addressing challenges like noise, intensity 

variations, and weak boundaries. The 

segmentation quality and accuracy are assessed 

by comparing vessel diameters extracted from 

algorithm outputs against ground truth images. 

The vessel diameters are calculated using a 

custom MATLAB algorithm based on the full 

width at half maximum of the vessel’s intensity 

profile. Linear interpolation further refines the 

measurements, enabling precise diameter 

estimation even in narrow regions. This paper 

presents a comparative analysis of the 

algorithms, focusing on their segmentation 

capabilities and error rates in vessel diameter 

measurement. The study underscores the 

importance of selecting robust segmentation 

methods for medical imaging applications, 

particularly for diseases like diabetic retinopathy, 

where precision is paramount [10, 11]. This 

paper is organized as follows: section 2 outlines 

the materials and methods, sections 3 present the 

experimental results and discussion, and section 

4 provides the conclusions. 

 

Materials and methods 

Database 

A total of 70 retinal images from the DRIVE 

digital retinal image database were used [12]. 

This database includes 35 randomly selected 

retinal images and 35 manually segmented 

images used as ground truth. These images are 

categorized as follows: 25 correspond to healthy 

subjects, while 10 are diabetic retinopathy retinal 

images.  

 

Chan-Vese Algorithm (CVA) 

The Chan-Vese algorithm is a region-based 

image segmentation method that extends 

classical active contour models by focusing on 

intensity homogeneity rather than edge detection. 

It uses energy minimization to segment images 

into regions with distinct intensity averages, 

making it robust for noisy images and weak 

boundaries. Widely applied in medical imaging, 

texture analysis, and object recognition, it excels 

in scenarios where edge-based methods falter [9]. 

 

Image preprocessing begins with CLAHE, which 

enhances contrast in low-intensity regions, and 

Gaussian smoothing, which reduces noise while 

preserving edges. A rectangular mask is 

initialized to cover most of the vascular area, 

setting the starting point for segmentation. The 

Chan-Vese algorithm iteratively evolves this 

contour using active contour, isolating the 

vascular system. Post-processing removes small 

artifacts (bwareaopen) and fills vessel holes 

(imfill) to create a complete map [13, 14]. 

 

The algorithm optimizes a functional based on 

the Mumford-Shah model, which balances data 

fidelity, contour smoothness, and regularization. 

However, it assumes piecewise constant regions, 

which may limit its effectiveness in complex 

textures, and its performance is sensitive to 

initial contour placement.  
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Considering an image , the mathematical function is defined as: 

 

 

where 𝐶 is the contour, 𝛺𝑖𝑛, 𝛺𝑜𝑢𝑡 are the 

regions inside and outside the contour, 𝑐1 , 𝑐2

represent the mean intensities inside and outside 

and 𝜇, 𝜈, 𝜆1, 𝜆2  are the parameters controlling 

smoothness, area, and fidelity [14, 15]. 

 

Watershed Segmentation (WS) 

Watershed segmentation is a region-based 

algorithm inspired by topographical landscapes, 

where pixel intensities represent peaks and 

valleys. The method uses the gradient of the 

image to identify areas of rapid intensity change, 

which typically correspond to object boundaries. 

The algorithm simulates a flooding process, 

where water starts from low-intensity regions 

(valleys) and gradually fills basins. When basins 

meet, boundaries or "dams" are created to 

prevent merging, forming watershed lines that 

separate regions. This process makes the 

algorithm particularly effective for segmenting 

overlapping or touching structures, such as cells 

or objects with shared edges [16]. 

 

In medical imaging, watershed segmentation is 

widely used for tasks like separating touching 

cells, delineating organs, or identifying tumors in 

modalities like CT, MRI, or histological images. 

Its ability to segment overlapping objects is 

critical in fields such as cytology, where tightly 

packed cells often need precise boundaries for 

analysis. Marker-based watershed techniques are 

commonly applied to guide the segmentation, 

where predefined markers act as seeds for the 

flooding process. This approach enhances 

accuracy, especially in noisy or complex images, 

such as separating overlapping blood vessels or 

identifying tumor margins in radiological scans 

[16, 17]. 

 

The algorithm relies on a mathematical function 

that computes the gradient magnitude of the 

image to highlight regions of intensity change. 

The gradient map is treated as a topographical 

surface, and local minima serve as starting points 

for the flooding simulation. Pre-processing steps 

like noise reduction or smoothing are often 

required to ensure that the gradient represents 

meaningful boundaries. While watershed 

segmentation can sometimes over-segment 

images, combining it with advanced pre- and 

post-processing techniques allows for more 

robust and clinically relevant results. Its 

adaptability and effectiveness make it a staple in 

medical image analysis, ensuring precise 

segmentation for diagnostic and research 

purposes [18]. 

 

Marr-Hildreth Filter (MHF) 

The Marr-Hildreth filter is a classical edge 

detection algorithm used in medical imaging to 

enhance boundaries and detect significant 

structures. By combining Gaussian smoothing 

with the Laplacian operator, it identifies edges 

through zero-crossings in the Laplacian of a 

smoothed image. This method captures fine 

details while reducing noise, making it effective 

for analyzing medical images with variability 

and subtle features. Its ability to delineate 

boundaries makes it valuable for detecting 

anatomical structures, segmenting tissues, and 

identifying abnormalities [19]. 

 

In medical imaging, the Marr-Hildreth filter is 

used to detect tumor boundaries, enhance organ 

edges, and segment biological structures. In X-

rays and CT scans, it highlights bone outlines 

and organ shapes to aid diagnosis and surgical 

planning. Similarly, in MRI and histological 

images, it emphasizes soft tissue contrasts or 

cellular structures for better visualization. Its 

noise suppression and edge-detection capabilities 

are particularly useful for identifying low-

contrast regions like early-stage lesions or subtle 

abnormalities, supporting early diagnosis and 

treatment planning. 

 



Cristian-Dragoș Obreja. Evaluation of vessel diameters in processed medical retinal images. Int. Arch. Integr. Med., 2024; 

11(12): 1-8.    

 Page 4 
 

Mathematically, the Marr-Hildreth filter operates 

by first applying a Gaussian filter to smooth the 

image, reducing the impact of noise and small 

variations. This smoothed image is then 

processed with the Laplacian operator, which 

measures the second derivative of intensity to 

identify regions of rapid change. Edges are 

detected by locating zero-crossings in the 

resulting image, which correspond to significant 

intensity transitions. The scale of the Gaussian 

filter plays a critical role, determining the level 

of detail captured, and must be carefully tuned 

for specific medical applications. By leveraging 

its mathematical robustness, the filter remains a 

cornerstone for edge detection in medical image 

analysis [19, 20]. 

 

Canny Edge Detection (CED) 

The Canny edge detection algorithm is a widely 

used image processing method, known for its 

precision and robustness in identifying edges. In 

medical imaging, it plays a crucial role in 

detecting boundaries for diagnosis and treatment 

planning. The method combines Gaussian 

smoothing to reduce noise, gradient computation 

to detect intensity changes, and non-maximum 

suppression to refine edges. Double thresholding 

and edge connectivity ensure only meaningful 

edges are retained, producing clear and 

continuous results [21, 22]. 

 

In applications like CT and MRI scans, the 

Canny algorithm aids in delineating bones, 

organs, and soft tissues, supporting tasks like 

tumor segmentation and surgical planning. It is 

also effective in retinal images for detecting 

blood vessel networks. Its adaptability and 

accuracy make it essential for preprocessing in 

automated diagnostic systems. 

 

The Canny algorithm relies on a sequence of 

operations. Gaussian smoothing minimizes noise 

and small variations, followed by gradient 

computation to measure intensity changes in 

multiple directions. Non-maximum suppression 

ensures that only the strongest gradient points in 

the edge direction are preserved. Finally, double 

thresholding classifies edges into strong and 

weak categories, allowing weak edges to be 

retained if they are connected to strong edges. 

This multi-step approach, guided by 

mathematical rigor, ensures a balance between 

sensitivity to faint edges and robustness against 

noise, making the Canny method a cornerstone in 

medical image analysis [22, 23]. 

 

Vessel Diameter Measurement 

To evaluate the performance of Canny, Marr-

Hildreth, Watershed and Chan-Vese methods, the 

retinal vessel diameters were measured. A 

custom Matlab algorithm was employed for this 

purpose. The algorithm extracts a vessel’s cross-

sectional intensity profile and generates three 

perpendicular crossing lines that intersect the 

vessel edges at two distinct points. The diameter 

of the vessel is calculated using the full width at 

half the maximum (FWHM) of the intensity 

profile. Linear interpolation is then applied to 

estimate the minimal diameters at three critical 

narrow locations [11]. 

 

Performance Evaluation 

To estimate theerror rate of themeasurement, 

thepercentageerrorwasused as follows: 

𝑒 =
 𝑀𝑅 −  𝑀𝑖  

𝑀𝑅
 ∙ 100% 

where,𝑀𝑅  is the vessel diameter derived from 

ground truth images, and  𝑀𝑖  is the vessel 

diameter obtained from measurements using the 

Canny, Marr-Hildreth, Watershed and Chan-

Vese methods outputs. [7] 

 

Results and Discussion 

To test the performance of the proposed 

algorithms, the measurements were performed on 

35 randomly selected retinal images. In Figure - 

1, examples of the vascular map generated with 

Canny edge detection method, Chan-Vese 

algorithm, Marr-Hildreth Filter and Watershed 

segmentation algorithmare shown.  

 

Measurements of retinal vessel diameters were 

conducted for both healthy subjects and patients 

suffering from diabetic retinopathy. The 
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implementation of these techniques was carried 

out in the MATLAB environment. 

 

Figure – 1: Original, manually segmented and 

processed retinal images.  

(a) original image;  

 
 

(b) ground truth image;  

 
 

(c) Canny Edge Detection;  

 

(d) Chan-Vese Algorithm;  

 
 

(e) Marr-Hildreth Filter;  

 
 

(f) Watershed Segmentation. 

 
 

Table - 1 summarizes the average vessel 

diameter measurements and associated errors for 

both healthy and diabetic retinopathy images. 

The listed values correspond to results from the 



Cristian-Dragoș Obreja. Evaluation of vessel diameters in processed medical retinal images. Int. Arch. Integr. Med., 2024; 

11(12): 1-8.    

 Page 6 
 

Canny, Marr-Hildreth, Watershed and Chan-

Vese algorithms. Analysis indicates that the 

Chan-Vese method consistently exhibits the 

lowest average percentage error rate. 

 

Table – 1: The average vessel diameter values 

and the average percentage error, for healthy 

subjects and diabetic retinopathy patients. 

 Healthy 

person 

Diabetic 

retinopathy 

Ground truth 2.201 2.240 

CVA 2.161 2.322 

𝒆𝑪𝑽𝑨% 1.818 3.506 

WS 2.332 2.381 

𝒆𝑾𝑺% 5.909 6.223 

MHF 2.491 2.578 

𝒆𝑴𝑯𝑭% 13.182 14.629 

CED 3.604 3.001 

𝒆𝑪𝑬𝑫% 63.636 34.036 

 

The primary goal of this study was to assess the 

techniques outlined in the preceding section to 

identify the optimal approach for enhancing the 

quality and improving vessel edge detection of 

retinal images. 

 

In Table – 1, we analyzed the error rate for every 

algorithm, for both healthy subjects and diabetic 

retinopathy patients. The smallest error is 

returned by Chan-Vese Algorithm, for both 

healthy and diabetic retinopathy affected 

subjects. The error values for CVA processed 

images are 1.818% for healthy subjects and 

3,506% for diabetic retinopathy patients. The 

second most accurate algorithm is Watershed 

segmentation, for both normal and diabetic 

retinopathy, with a error rate values of 5.909% 

and 6.223%. 

 

The largest error is generated by Canny edge 

detection, with a value of 63.636% for healthy 

subjects and 34.036% diabetic retinopathy 

affected subjects. In the situation of CVA, WS 

and MHF methods we can observe that the 

percentage error rate for healthy persons is 

smaller compared to the error generated over the 

processed images of diabetic retinopathy 

patients. It can be observed that the only 

exception is Canny edge detector. 

 

At a visual analysis, we can observe that even if 

the vessel diameter error rate is smaller for CVA 

and WS algorithms, they also generate a large 

number of image artifacts. Moreover, both of 

them generate broken edges. The best results, 

from a visual analysis, are generate by the MHF 

method, with uninterrupted edges and no artifacts 

in the final image. 

 

This study is subject to certain limitations. The 

accuracy of vessel dimension measurements may 

be affected by variables such as age, gender, 

image quality, and the presence of artifacts like 

noise. Furthermore, the reliance on a single 

projection limits the scope of the findings. 

Ideally, such projections should be correlated 

with circular cross-sectional profiles, but 

obtaining these images presents significant 

challenges. 

 

Conclusions 

This study evaluated the performance of four 

image processing algorithms, Canny Edge 

Detection, Marr-Hildreth Filter, Watershed 

Segmentation, and Chan-Vese Algorithm for 

measuring retinal vessel diameters. The results 

demonstrated that the Chan-Vese Algorithm 

consistently delivered the smallest average 

percentage error, making it the most accurate 

method for vessel diameter estimation among the 

tested algorithms. The Marr-Hildreth filter 

provided superior visual results, producing 

continuous edges and minimizing image 

artifacts, but it exhibited higher error rates 

compared to CVA and WS.  

 

The study also highlighted inconsistencies in the 

performance of the tested algorithms, particularly 

for images affected by diabetic retinopathy, 

where background complexity and noise 

significantly influenced segmentation accuracy. 

These findings underscore the importance of 
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selecting robust methods like CVA for clinical 

applications where precision is paramount. 
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